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EQUATIONS OF GENERALIZED THERMOELASTICITY 

OF A COSSERAT MEDIUM IN STRESSES 

VI. N. Smirnov UDC 539.377 

Thermoelasticity equations in stresses are derived in this paper for a Cosserat medium taking 
into account the finiteness of the heat propagation velocity. A theorem is proved on the unique- 
ness of the solution for one of the obtained systems of such equations. 

The development of experimental investigation of the interaction between optical radiation and a substance 
evokes interest in a detailed study of the thermoelastic phenomena occurring in solids subjected to laser radia- 
tion. Such radiation requires taking account of the finiteness of the heat propagation velocity in connection with 
the quite rapid nature of the heat liberation process. Taking this circumstance into account requires insertion 
of an additional term in the Fourier heat conduction law, as is assumed in, e.g., [I, 2]. The polycrystalline 
or granular construction of many materials used in force optics evokes a requirement to involve a nonsymmet- 
rie Cosserat model in the analysis, which describes the behavior of such media more accurately under defor- 
mation [3]. The equations of isothermal nonsymmetric elasticity theory have been investigated in detail in 
[4-6]. The papers [7-9] and a section of the monograph [3] are devoted to the theory of nonsymmetric thermo- 
elasticity without taking account of the finiteness of the heat propagation velocity. The equations of generalized 
thermoelasticity of a Cosserat continuum have been obtained in [i0]. The system of equations in the displace- 
ment vector u, the small rotation vector 00, and the relative temperature deviation ~from the initial value 90 
has the form 

(~t § a) V2U + (~ - -  a § ~) VV" u + 2~ V • o + X - -  vO0V~ = pu; 

(7 + e) V2o + (7--e + [~) VV.O -~ 2aV• -- 4ao + Y = I. r (i) 

k V ~  - -  ~omOo ~ -- moo ~4 _ v~oV" ~i -- v v .  u' = -- O~"w -- ~oOT I ~; 

t~ = ( 0 -  0o) O~ -~. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 3, pp. 482-488, March, 1981. Original 
article submitted January 2, 1980. 
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Here ~, ~ ,  X, v, 7 ,  e, /3, m are constants introduced in [3] that charac te r ize  the mechanical  and thermophys i -  
cal proper t ies  of the medium. Let us limit ourselves  to examination of the case when 

I = I0 E. (2) 

The sys tem of equations (1) is a general izat ion of the classical  Lam6 and Four i e r  equations. As is known f rom 
the symmetr ic  theory of elast ici ty,  equations in the s t ress  tensor  are  of interest  in the solution of specific prob-  
lems in many cases .  To obtain such equations, a sys tem of equations of motion in the force s t r e s ses  T and the 
moment s t r e s ses  M is necessary:  

v .T  + X = pii; v . M _  2aT+ y _  l.~, (3) 

where aT is a vector  corresponding to the tensor  T [11], and the sys tem of governing equations is [3] 

T = 2p/+ + 2a7- + (~,~/'" E -- ~@oa}) E; (4) 

M = 27:r + + 2e~- + J3 (~" E) E; s = v 7 '" E + mOo~, 

where 

y : VU+ coXE; z = V m "  (5) 

The superscript plus denotes the symmetric part of the tensor, while the minus is for the antisymmetric part. 
It follows from the first equation in system (4) and the definition of the strain tensor (5) that 

I (6) 
V' u = ~ . .  E - -  ( T ' "  g + 3~O00). 

2~ + 3~ 

Using (6), the sys tem of equations (4) is eas i ly  converted into the form 

7 = (2~)-i T + + (2=)-~ T- + (2~ + 3X) -i I~eo~ --  x (2~)-~ T .. El E; 

x -- (27) TM M + + (2e)-' M-' - -  ~ 127 (27 + 3~)1 -~ (M .. E) E; (7) 

-s = v (2~ + 3L) -i T .. E + [m + 3vz(2~ + 3)0-'] @d}. 

If the following integrals are considered 

C C 

~176176 = Jo dco = C~ "~ ~*-dr;  

c c 
u ( C ) - - u ( C o ) =  ~ d u =  ~ (7 - -  co x E)* . dr, 

Co Co 

(8) 

then by requiring independence of the integrals from the form of the path of integration, we obtain the compat- 

ibility equations 

V •  0; V •  + ( E " ~ )  E - - 0 -  (9) 

The asterisk denotes the tensor that is the transpose of that given. The equations (9) were obtained in [5] by 
a somewhat different method. Using the governing equations (7), we easily obtain the following system of equa- 

tions from the compatibility conditions (9): 

*v • M + + Yv x M-  - -  ~ (27 + 3~)-, v • (E (M .. E)) = 0; 

(2~)-I [~V • T+ + ~V • T- --  aX (2~ + 3X) -i V • (E (T.. E)) + 

(10) 

+ ~eo (2~t + 3~ -~ V • #E ~ (2~e) -~ [aM + - -  ~M- + e (~-- 27) (27 + 3~) -j (M -- E) El = 0. 

Moreover ,  the equations in the t ensor  components of the force and moment s t r e s se s  can be obtained analogous- 
ly to how the Be l t r ami -Mi t che l l  equations were obtained for  a symmet r i c  medium in [12]. By using the " g r a -  
dient" operation in the f i rs t  two equations of the sys tem (1), using the definition of the s t ra in  and bending- tor -  
sion tensors  (5), and also the governing equations (7), we obtain the following system: 
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{(7+a) VZ--I~ OZt { ~  2j q- 2~1 M- (~ . .  ~) E } 2=(~.. E) 
27 (27 + 3~) I 27 + 3~ 

{2--~ M+-- I M--- + V Y + (7 - -  s + ~) VV" 2s 

{( ~ + ~) V ~ -  

(m.. ~) E ) 
27 (27 + 3~) 

{ ' T + - -  + 2 ~  V• 1 T + +  2~ 

9 ~2- T+ + 2c~ 2,u + 32 

- -1- v- + ~ (,,Oo~ z, 
2c~ 2~ + 3;~ 2~ 

+( I~+~z+)~){V '{2@M+-- -12s  M- 

- - (~+~z)  v- + 2~ 

%_ 1 M- f~(M.. E) E } 
--2~ I M++ 2-~- 27 (27+3~) + 

( - )}}* 1 vOoO-- )~ T-'E E =0;  
2~ + 3;~ 2~t (11) 

)" T . . E ) E } + v X = - v @ o V V ~ , + ( ~ - - a + k ) V V . { +  T + -  
2,a 

_ _ _  + ) ~ o  ( V ' M -  2at + Y)• E+  

[3 (M" E)E }}*__ 

27 (27 + 3~) 

[3(M.. E)E } } •  O. 

It should be noted that other equations in T and M can also be obtained. By applying the "gradient" operation 

to (3), as is done in [13] in the examination of a symmetric medium, and using (5) and (7), we convert the sys- 

tem to the form 

29 O,~(f..E) E 9 (v .M)•  + 9'vOo~,E _ v X _  9 Y •  2C_f++  s  ; r -_VV.T + T - - -  - - - -  
2~ 2a Io 2~t (2~ + 3) 0 Io 2~t + 3~, Io (12) 

I_!o ~1++ I o ~ I - - - v v . M - -  ~Io(#i"E) E + 2 v a r + v Y = 0 .  
2 7 2e 2 7 (2 7 + 3~) 

It is pe r fec t ly  evident that any of the sys tems  (10), (11), and (12) should be supplemented by the heat conduction 
equation. Using (6), the heat  conduction equation is eas i ly  t r ans fo rmed  into the fo rm 

3v 2 ) v (%T.. E + ;1"" E) = w T0w (13) 
kVZ~ - -  Oo m -}- 2~t + 3L ) (%~}" + ~) 2p~ + 32~ Oo Oo 

Attention should be turned to the c i rcumstance  that in the considerat ion of a symmet r i c  medium the sys tems  (10) 
and (11) go over  into the B e l t r a m i - M i t c h e l l  equations in the l imit  case ,  which, as is known, should be supple-  
mented by equations of motion or  equi l ibr ium for  solution. As regards  (12), which a re  general ized Ignaczak 
equations,  it can then be expected that the solution of this sys tem supplemented by the heat  conduction equation 
turns  out to be unique. 

Let the sys tem of equations (12) and (13) have two different  solutions Tt,  M1, ~1 and T2, M2, d 2 that sa t is fy  
boundary and initial conditions of the fo rm 

n - T [ .  = F(t, q)); 

T (K)lt=0 = f (K); 

T (K)lt=0 = h (K); 

no M I .  = G G ~ ) ;  

M (K)lt=0 = g (K); 

(~()1~:0 = J (K); 

(.)KCV. 

~le) = H (t, (D); 

0 (K)lt=o = z(/(); 

(K)h=o = r (K); 

(14) 

In this case  T O = T 1 - T2; IV[ 0 = M 1 - 1V[2; v% = #1 - #2 sa t i s fy  the homogeneous equations (12) and (13) for  
homogeneous boundary and initial conditions. We integrate the homogeneous equations (12) with r e spec t  to t ime 
in the interval  (0, t). If the initial conditions a re  taken into account and the tensors  S and N, analogous to the 
Blot vec to r  in the theory  of heat  conduction, a re  introduced 

g = T ;  N = M ,  (15) 

then we obtain as a result of the integration 

9 To + +  P T o - - v V . S o +  2p p)~(To..E)E P (V'No) E +  
2~t ~ ~ So--- 2~___]5~3~)) Io 

PvOo~oE -- 0; 
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2~-I~ M~--~, ~I~ M~--- vV'No--Pt~176 E 2 7 ( 2 7  + 3[~) +2a~ (16) 

Let us combine the result of a convolution of the first of the tensor equations (16) with the tensor T O and the 
second equation with the tensor PIohY[ 0. We combine the obtained expression with (13) multiplied by -p| 
and we integrate over the volume of the body V and in time in the interval (0, t). Using the Ostrogradskii- 
Gauss theorem and taking account of the homogeneous boundary conditions, we obtain the following equality: 

f { p T o " T o + ~ P  M o " M o +  1 } -~a 4~ -~- (V" So) 2 dV = O, 
V 

(17) 

where we have introduced the notation 

P 

V 

, ' 2~ + 3 ; ~  
V 

t 

2~ + 3~, 
0 V 

(Mo'" E) 2} dV; 
27 + 3~ 

p~ (To" E) 2 
4~ (2~ -}- 3k) 

3v2 '\ @2} dV; 
pO~ ( m + 2~-+ 3~ ) 

( 3v2 ) 5o~o} dVdt; (T .. E) + %Oo m + 29 + 3------~, 

(18) 

t 

J t =  ~ P  ~ ~ l  2M~176176176215 21 OtO 
0 V 

0 (S~-..S~-) } dVdt. - -  ( v .  No) 

Let us consider  the integrals J1, J2, J3, J4. It is easy to show that 

P ~ {2 [(M+)~2 -{- r 2 + (Mo+)~3] + 27 (27 + 313)-t [(M.)~, + i. 9 13 

V 
(19) 

+ (Mo)~ + (Mo)231 + [3 (2 7 -F 3[~)-' {[(Mo),, - -  (M0)22] 2 + [(Mo)~ - -  (Mo)3~] 2 + [(Mo)-z3 --  (Mo)u]2}} dr. 

As a resul t  of simple calculations, the integral J2 can be converted to the form 

9 ~{mO]O~+ 1__ +~ j~ = y l ~ [(T+)~2 + (To)lz + (T+)~s] + 
V 

+ ~, [2~ (2~ + 3k)l-' {[(To),, - -  (To)~2l ~ + [(To)2~ --  (To)~3I ~ + 

(20) 

+ [(To)~-- (To),,] 2} + (2,Lt + 3E) -~ {[(To),~ + vOo~o] 2 + [(To)2~ + VOoffo] 2 + [(To)3~ + V@o@o]2}} dV. 

Using the third of the governing equations (7) and the Os t rogradsk i i -Gauss  theorem, taking account of the 
boundary conditions, the entropy balance equation 

and the general ized Four ier  law [2] 

0o(1 + ~) s = - - v ' q +  w 
(21) 

"roq + q = - -  kOoVO, (22) 

we convert  the integral J3- Since equations of l inear  thermoelast ic i ty  a re  considered in executing the t rans -  
formations,  only te rms  of identical o rder  should be conserved.  Consequently, we obtain 

t 

= - p t q o . v o o a V a t .  ( 2a )  
o V 
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Let us examine the integral J4. If the vector 

c = V.N0 (24) 

is introduced into the consideration, then it can be shown as a result of simple manipulation that 

& = 2~o {[c~ + (So)~ - (So)~V + [c.~ + (so)~ - -  (So),~V + [c~ + (So)~ - -  (So)~,] ~} dr, 

V 

As is known from thermodynamics [14], 

(25) 

q.v~ ~o, (26) 
(I + e) 2 Oo 

hence, forp, I 0, ~, e, 7, /3, ~, k, m > 0 it follows from (17) that the integral of the sum of the quadratic 
terms is a nonpositive quantity. This is possible only if all the integrands vanish. Therefore, 

T0=0 ;  M 0 = 0 ;  ~ 0 = 0 .  (27) 

The sys tem of equations (12) and (13) hence has a unique solution. It should be noted that in the limit case the 
sys tem of equations (12) and (13) goes over  into the sys tem of equations of general ized thermoelas t ic i ty  in 
s t r e s ses  for a symmet r i c  medium 

-2-~ 2g + 3)-----~ -2~- T~ E - -  ~Oo~ = def V" T + def X; 
(28) 

kv~-- e0 ~ + 2~ + 3~/ (~0(~ 6)-- 2~ + 3~ e0 -- e--g ' 

where 

1 (29) 
def a = - -  (V a + (va)*), 

2 

and the proof presented for ~e uniqueness of the solution goes, for ~ = 0, v = 0, over into a proof of the unique- 
ness theorem for the solution of the Ignaczak equation of elastokinetics for a symmetric medium. In contrast 
to the proof presented in [3], nowhere are equations used that contain kinematic characteristics. 

N O T A T I O N  

u, displacement vector; w, small rotation vector; | absolute temperature; @0, initial temperature of 
the medium; d, relative deviation of the temperature from the initial value; #, ~, X, v, e, 7, /3, m, constants 
characterizing the mechanical or thermophysical properties of the medium; p, density; I, dynamic character- 
istic of the medium reaction during rotation; k, heat conduction coefficient; TO, a constant characterizing the 
velocity of heat propagation; X, external volume force vector; Y, external volume moment vector; w, density 
of the heat liberation sources distributed in the medium; E, unit tensor; T, force stress tensor; M, moment 
stress tensor; T, nonsymmetric strain tensor; n, bending-torsion tensor; s, entropy referred to unit volume; 

V, volume occupied by the body; ~, surface bounding the body; (T)ki, (M)ki, components of the tensors T and 
M; q, thermal flux vector. 
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EXCITATION OF A TEMPERATURE WAVE BY A 

RECTANGULAR THERMAL SURFACE PULSE 

A. G. Goloveiko and V. I. Martynikhina UDC 537.52:536.3 

We calculate the temperature field in a metal under the action of a rectangular thermal surface 
impulse with a fixed total energy and varying duration. It is shown that for a given duration of 
this impulse, conditions are created which ensure a maximal shift of the melting isotherm to- 

ward the interior of the metal. 

In the present work we consider a thermophysical process in a metal in regimes when the following con- 
dition holds for the thermal pulse applied at the boundary: 

lV  = F t  = const, (i) 

where F is the thermal  flux density, whichis  constant during the t ime of its action t. The condition W = constant 
can be realized in various ways: f rom a short  pulse of a high-densi ty thermal  flux, to an extended pulse for  a 
low densi ty of the thermal  flux. Condition (1) essent ia l ly  descr ibes  a multitude of pulses which differ by pa ra -  
meters  F and t but have the same pa rame te r  W. 

An analysis shows that the action of thermal  pulses which differ  in pa ramete r s  F and t but have the same 
pa rame te r  W has appreciably different results  on the metal .  

For a long pulse duration the high thermal conductivity characteristic for metals ensures the transfer 
of the heat flux far into the metal. Therefore, the long pulse excites a deep but weak heating of the metal 
whose temperature field is extended over a large region. Towards the end of the pulse, the melting isotherm 
remains near the surface of the metal because of the weak heating. For short pulses of the same energy W, 
on the other hand, the metal is heated to large temperatures, and the temperature field is concentrated near 
the surface of the metal. In this case, the melting isotherm towards the end of the pulse also remains near 
the surface of the metal but for a different reason, because of the spatial concentration of the temperature 

field. 

Clearly, in the intermediate conditions between long and short duration at a given energy W, the melting 
isotherm will be displaced by the largest amount. The aim of the present work is to substantiate this asser- 
tion quantitatively because of its importance in the analysis of the appropriate scientific and applied problems. 

In the solution of the problem formulated above we shall limit ourselves to the analysis of a one-dimen- 
sional thermophysical process, and neglect the phase transformations. The process will be approximated by 
the problem of excitation of a temperature field (or a temperature wave) by a rectangular thermal pulse: 

Belorussian Polytechnic Institute, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, 
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